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Motivation: quarkonium suppression in a thermal bath of quark-gluon plasma

Figure 1: History of the universe: protons and neutrons (the
constituents of atomic nuclei), which are made up from mainly light
quarks (u and d) and gluons, have frozen out at t ≈ 0.3µs. Before
the freezeout light quarks and gluons had formed a quark-gluon
plasma (an almost perfect fluid). Heavy quarks (c and b), travel as
bound states or individually through the surrounding quark-gluon
plasma.

Figure 2: In ultra-relativistic heavy-ion collisions (at RHIC@BNL,
LHC@CERN, etc.) an expanding fireball of quark-gluon plasma is
created.

Figure 3: The relative abundances of the bound states of a bb̄ pair
are different in heavy-ion and proton-proton collisions. This effect
is called quarkonium suppression in quark-gluon plasma.
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Figure 4: Spectral function of S-wave charmonium (cc̄) at different
temperatures [1] from a theory calculation (a lattice QCD potential
used in a nonrelativistic quark model). Peaks broaden and move
to lower energy with increasing temperature. Narrow peaks cor-
respond to bound states; the shift of the maximum accounts for
changes to the binding energy. The peak width indicates thermal
dissociation (and recombination), which are real-time processes.

Figure 5: Melting patterns of different cc̄ and bb̄ states indicate the
temperature of the quark-gluon plasma. In-medium heavy-quark
bound states can be observed through their electromagnetic decays
from within the quark-gluon plasma formed in heavy-ion collisions.
The electromagnetic decay probability of each state is related to the
area of the corresponding peak of the spectral function.
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First-principle lattice QCD instead of model calcula-
tions is required to reduce the systematic errors. The
intermediate step of retrieving a continuous spectral
function from the discrete data set of a lattice corre-
lation function along the time direction is an ill-posed
problem. This problem is alleviated for anisotropic
lattices with a much finer temporal lattice spacing.

Lattice QCD

Quantum ChromoDynamics is the non-Abelian SU(Nc = 3)
gauge theory coupled to Nf matter fields (quarks) with different
masses (this project: Nf = 2 + 1, two light quarks and a strange
quark). The N2

c − 1 = 8 gauge bosons are the massless gluons.
Due to its non-Abelian nature, QCD has an emergent scale ΛQCD.
A systematic expansion in a small parameter is not feasible for
the physical processes involving scales close to ΛQCD. Therefore,
nonperturbative methods such as lattice QCD are required.

Imaginary time formalism

Lattice QCD simulations use Markov Chain Monte Carlo
algorithms (i.e., Rational Hybrid Monte Carlo) to generate
snapshots (configurations) of thermally equilibrated nuclear
matter on a 4D space-time grid of N3

σ ×Nτ sites. Quark fields
are defined on the sites and gluon fields on the links between

each pair of sites. In order to use importance sampling,
simulations have to be performed in a imaginary time

formalism, i.e., with Euclidean metric (instead of Minkoswki
metric). In this setup, real-time dynamics cannot be studied
directly, but is accessible via a detour to spectral functions.

Lattice scale and artifacts

The lattice step a or lattice scale is not an input parameter.
Instead, the gauge coupling of the non-Abelian gauge theory is
the main input parameter, which is related to ΛQCD in a nonlinear
way. In a simulation all dimensionful quantities are determined

relative to the lattice scale a. Fixing one of these to its
experimentally known value fixes the lattice scale a a posteriori.

Discretization artifacts
Unphysical discretization artifacts are removed by taking the
continuum limit, which is determined from simulations with
increasingly finer lattice step a. Variants of the staggered

quark discretization are the most numerically efficient lattice
formulation for quarks, but have the drawback of producing a

distorted spectrum unless the continuum limit is taken.
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Figure 6: Among the various staggered quark discretizations the highly im-
proved staggered quarks (HISQ) has the smallest distortions of the spectrum [2].

Finite temperature and volume

Euclidean time and inverse temperature

The inverse physical length of the Euclidean time direction
plays the role of the equilibrium temperature, T = 1/(aτNτ ),
where Nτ is the number of time steps and aτ is the lattice
step in the time direction. In order to take the continuum

limit at the fixed temperature T , which removes the artifacts
of the lattice approach, one has to simultaneously decrease
aτ and increase Nτ keeping T = 1/(aτNτ ) constant.

The spatial volume is analogous, i.e., V3 = (aσNσ)3, where Nσ
is the number of steps and aσ is the lattice step in any of the

spatial directions. Effects of the finite volume are negligible if the
inverse physical length of each spatial direction is much smaller

than the mass gap, i.e., the mass of the would-be Goldstone
bosons. At high temperature it is sufficient that aσNσ � 1/T .

f
Continuum limit

To take the continuum limit one has to keep temperature,
volume, and known physical quantities constant up to
discretization artifacts, and one has to know the scaling

relations of the discretization artifacts with the lattice step a,
see Fig. 6, for the case of the distorted staggered spectrum.

Anisotropic lattices

Temporal correlators on anisotropic lattices

Lattice correlation functions are usually calculated along the
Euclidean time direction. Consequently, reconstructing the
spectral function from a lattice correlation function is an

ill-posed problem. The larger the number of steps in the time
direction the less ill-posed the problem is. Anisotropic

lattices are the only approach that permits increasing the
number of time steps, while keeping the temperature, the

volume and the number of spatial steps fixed.

In anisotropic lattice QCD there are two gauge couplings or a
gauge coupling and a bare anisotropy, which are related to the
two lattice spacings aτ and aσ or a lattice spacing a ≡ aσ and a
renormalized anisotropy ξ = aτ/aσ in a nonlinear way. Quarks
have a different, nontrivial relation between a bare anisotropy
and a renormalized anisotropy ξ. As discretization artifacts are
functions of both aσ and aτ , the scaling relations are affected
by the anisotropy ξ. In particular, the distortions of the HISQ
spectrum (see Fig. 6) are altered, i.e., all degeneracies are lifted,
and the dependence of the RMS pion mass on a is distorted.

Project plan

In an initial step, we study the HISQ spectrum in anisotropic
pure gauge theory (without dynamical quarks) to quantify the
distortions of the anisotropic HISQ spectrum and its scaling
relations. Our implementation of the anisotropic HISQ Dslash
operator [3] and the vectorized anisotropic pure gauge theory
algorithm (heatbath with overrelaxation) in the HotQCD code,
which is optimized for the KNL architecture, is nearly complete.
After establishing control of the scaling relations we will adapt
the corresponding HMC algorithm for full anisotropic QCD.

Anisotropic QCD with HISQ

• We verify our vectorized anisotropic implementation
against the anisotropic branch of the public MILC code [4].

• The anisotropic HISQ Dslash operator has identical per-
formance characteristics as its isotropic counterpart [3].

• The bare quark anisotropy may require a reorganization of
the HISQ link smearing algorithm, see [3].

• The quark and gauge anisotropies require some reorgani-
zation of the HISQ and gauge force algorithms, see [3].
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